Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study
نویسندگان
چکیده
Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear stress (FSS) on the viability and efficacy of metastasis is not well understood. Recent work has shown that select cancer cells may be able to survive and possibly even adapt to FSS in vitro. The current research seeks to characterize the effect of FSS on the mechanical properties of suspended cancer cells in vitro. Nontransformed prostate epithelial cells (PrEC LH) and transformed prostate cancer cells (PC-3) were used in this study. The Young's modulus was determined using micropipette aspiration. We examined cells in suspension but not exposed to FSS (unsheared) and immediately after exposure to high (6,400 dyn/cm2) and low (510 dyn/cm2) FSS. The PrEC LH cells were ~140% stiffer than the PC-3 cells not exposed to FSS. Post-FSS exposure, there was an increase of ~77% in Young's modulus after exposure to high FSS and a ~47% increase in Young's modulus after exposure to low FSS for the PC-3 cells. There was no significant change in the Young's modulus of PrEC LH cells post-FSS exposure. Our findings indicate that cancer cells adapt to FSS, with an increased Young's modulus being one of the adaptive responses, and that this adaptation is specific only to PC-3 cells and is not seen in PrEC LH cells. Moreover, this adaptation appears to be graded in response to the magnitude of FSS experienced by the cancer cells. This is the first study investigating the effect of FSS on the mechanical properties of cancer cells in suspension, and may provide significant insights into the mechanism by which some select cancer cells may survive in the circulation, ultimately leading to metastasis at distal sites. Our findings suggest that biomechanical analysis of cancer cells could aid in identifying and diagnosing cancer in the future.
منابع مشابه
Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress.
The mechanical properties of cultured bovine aortic endothelial cells exposed to a fluid-imposed shear stress were studied using the micropipette technique. The cells, which were attached to a Thermanox plastic substrate, were exposed to a specific steady shear stress of either 10, 30, or 85 dynes/cm2 and for a duration ranging from 0.5 to 24 hours. Morphological changes in shape and orientatio...
متن کاملFlow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle.
The mechanical contribution of nucleus in adherent cells to bearing intracellular stresses remains unclear. In this paper, the effects of fluid shear stress on morphology and elastic properties of endothelial nuclei were investigated. The morphological observation suggested that the nuclei in the cytoplasm were being vertically compressed under static conditions, whereas they were elongated and...
متن کاملFeeling Stress: The Mechanics of Cancer Progression and Aggression
The tumor microenvironment is a dynamic landscape in which the physical and mechanical properties evolve dramatically throughout cancer progression. These changes are driven by enhanced tumor cell contractility and expansion of the growing tumor mass, as well as through alterations to the material properties of the surrounding extracellular matrix (ECM). Consequently, tumor cells are exposed to...
متن کاملRheological properties of blood after whole body gamma-irradiation
Background: The study of rheological properties of blood has special interest since it is a circulating fluid exposed to shear rates during its life time. This work aims to investigate the influence of whole body gamma irradiation on the rheological properties of rat’s blood. The applied shear rate was from 12 to 375 s-1. Low shear viscosity (up to 100 s-1) depends mainly on the erythroc...
متن کاملMicropipette aspiration for studying cellular mechanosensory responses and mechanics.
Micropipette aspiration (MPA) is a widely applied method for studying cortical tension and deformability. Based on simple hydrostatic principles, this assay allows the application of a specific magnitude of mechanical stress on cells. This powerful method has revealed insights about cell mechanics and mechanosensing, not only in Dictyostelium discoideum but also in other cell types. In this cha...
متن کامل